Nutrición animal: Texto de formación universitaria

Autores/as

Bernardo Roque Huanca
Universidad Nacional del Altiplano
https://orcid.org/0000-0003-4186-5142

Palabras clave:

nutrición animal, energía, proteínas, minerales, vitaminas

Sinopsis

El texto que se pone a consideración del lector, en su edición digital, revisada y corregida, ha sido preparado con fines académicos, para la formación de médicos veterinarios y/o zootecnistas, en el contexto del Altiplano de Puno-Perú; sin embargo, puede servir como referencia para todo lector interesado en la nutrición animal. Incluye seis unidades temáticas: fisiología digestiva de los animales, como uno de los procesos nutricionales clave, seguida de energía (carbohidratos), lípidos, proteínas, minerales y vitaminas, y una unidad temática adicional sobre la evaluación de la composición química y calorimetría de los alimentos.

Biografía del autor/a

Bernardo Roque Huanca, Universidad Nacional del Altiplano

Doctoris Philosophiae (PhD) en Ciencia Animal, Magíster Scientiae en Nutrición por la Universidad Nacional Agraria La Molina. Docente investigador RENACYT, ganador de concursos Nacionales de Proyectos de Investigación en Ciencia y Tecnología (PROCYT) del CONCYTEC. Entre sus proyectos se encuentran: Manejo y Procesamiento de la Totora en Concentrado Fibroso para la Alimentación de Vacunos, el Incremento de su Productividad y la Reducción de las Emisiones de Metano (CH4); Requerimientos energéticos de alpacas mediante el método de sacrificio comparativo; Requerimientos energéticos de termogénesis en alpacas.

Referencias

Abdoul-Aziz, S. K. A., Zhang, Y., & Wang, J. (2021). Milk Odd and Branched Chain Fatty Acids in Dairy Cows. Animals, 11(3210), 1–13. https://doi.org/10.3390/ani11113210

Abe, C., Miyazawa, T., & Miyazawa, T. (2022). Current use of Fenton reaction in drugs and food. Molecules, 27, 5451. https://doi.org/10.3390/molecules27175451

Abeysuriya, H. I., Bulugahapitiya, V. P., & Pulukkuttige, J. L. (2020). Total vitamin C, ascorbic acid, dehydroascorbic acid, antioxidant properties, and iron content of underutilized and commonly consumed fruits in Sri Lanka. International Journal of Food Science, 2020(4783029), 1–13. https://doi.org/10.1155/2020/4783029

Aboseif, A. M., Ramadan, E. A., & El-Hammady, A. K. I. (2022). Effectiveness of dietary vitamin C on the performance of common carp (Cyprinus carpio). Egyptian Journal of Aquatic Biology and Fisheries, 26(5), 257–287. https://doi.org/10.21608/ejabf.2022.260736

Adebayo, M., Zhang, X. M., Wang, M., Wang, R., Wen, J. N., Hao, L. Z., He, J. H., Shen, W. J., Ma, Z. Y., & Tan, Z. L. (2022). Proper motility enhances rumen fermentation and microbial protein synthesis with decreased saturation of dissolved gases in rumen simulation technique. Journal of Dairy Science, 105(1), 231–241. https://doi.org/10.3168/jds.2021-20165

Adu, E. K., Awotwi, E. K., Amaning-Kwarteng, K., & Awumbila, B. (2012). Metabolic fecal nitrogen and digestibility estimates in the grasscutter (Thryonomys swinderianus). Tropical Animal Health and Production, 44, 881–886. https://doi.org/10.1007/s11250-011-9982-2

Ahn, H. H., & Kim, T. J. (2021). Three endogenous cellulases from termite, Reticulitermes speratus KMT001. Archives of Insect Biochemistry and Physiology, 106(3), 1–11. https://doi.org/10.1002/arch.21766

Ajibola, A., Chamunorwa, J. P., & Erlwanger, K. H. (2012). Nutraceutical values of natural honey and its contribution to human health and wealth. Nutrition and Metabolism, 9(61), 1–12. https://doi.org/10.1186/1743-7075-9-61

Akkinapally, S., Hundalani, S. G., Kulkarni, M., Fernandes, C. J., Cabrera, A. G., Shivanna, B., & Pammi, M. (2018). Prostaglandin E1 for maintaining ductal patency in neonates with ductal-dependent cardiac lesions. Cochrane Database of Systematic Reviews, 2(CD011417), 1–13. https://doi.org/10.1002/14651858.CD011417.pub2

Al-Bari, A. A., & Al Mamun, A. (2020). Current advances in regulation of bone homeostasis. FASEB BioAdvances, 2, 668–679. https://doi.org/10.1096/fba.2020-00058

Albright, J. L. (1993). Feeding Behavior of Dairy Cattle. Journal of Dairy Science, 76(2), 485–498. https://doi.org/10.3168/jds.S0022-0302(93)77369-5

Altobelli, G. G., Van Noorden, S., Balato, A., & Cimini, V. (2020). Copper/zinc superoxide dismutase in human skin: Current knowledge. Frontiers in Medicine, 7(183), 1–8. https://doi.org/10.3389/fmed.2020.00183

Álvarez, J., Castro, N., Yupanqui, E., & Aliaga, E. (2016). Estudio preliminar del Astragalus garbancillo Cav. Revista Peruana de Química e Ingeniería Química, 19(2), 31–36. https://revistasinvestigacion.unmsm.edu.pe/index.php/quim/article/view/13091

Amadei, G., Handford, C. E., Qiu, C., De Jonghe, J., Greenfeld, H., Tran, M., Martin, B. K., Chen, D. Y., Aguilera-Castrejon, A., Hanna, J. H., Elowitz, M. B., Hollfelder, F., Shendure, J., Glover, D. M., & Zernicka-Goetz, M. (2022). Embryo model completes gastrulation to neurulation and organogenesis. Nature, 610(7930), 143–153. https://doi.org/10.1038/s41586-022-05246-3

An, S. H., Kim, D. W., & An, B. K. (2016). Effects of dietary calcium levels on productive performance, eggshell quality and overall calcium status in aged laying hens. Asian-Australasian Journal of Animal Sciences, 29(10), 1477–1482. https://doi.org/10.5713/ajas.15.0655

Anand, R., Mohan, L., & Bharadvaja, N. (2022). Disease prevention and treatment using β-carotene: the ultimate provitamin A. Revista Brasileira de Farmacognosia, 32(4), 491–501. https://doi.org/10.1007/s43450-022-00262-w

Andersen, J. E. T. (2018). Understanding uncertainty to weighing by electronic-analytical balances. Journal of AOAC International, 101(6), 1977–1984. https://doi.org/10.5740/jaoacint.17-0428

Andriotis, V. M. E., Saalbach, G., Waugh, R., Field, R. A., & Smith, A. M. (2016). The maltase involved in starch metabolism in barley endosperm is encoded by a single gene. PLoS ONE, 11(3), e0151642. https://doi.org/10.1371/journal.pone.0151642

Angel, R., Kim, S. W., Wenting, L., & Jimenez-Moreno, E. (2013). Velocidad de paso y pH intestinal en aves: Implicaciones para la digestion y el uso de enzimas. XXIX Curso de Especialización FEDNA, 14. https://www.produccion-animal.com.ar/produccion_aves/produccion_avicola/05-13CAP_VIIItrad.pdf

Angeli, A., Carta, F., & Supuran, C. T. (2020). Carbonic anhydrases: Versatile and useful biocatalysts in chemistry and biochemistry. Catalysts, 10, 1008. https://doi.org/10.3390/catal10091008

Ani, P. N., Egbuhuzor, U. P., & Amadi, E. C. (2013). Comparative studies of yellow and white corn varieties for fuel ethanol production. International Journal of Science and Technology, 1(5), 5–10. http://internationaljournalcorner.com/index.php/theijst/article/view/128085/88755

Annongu, A. A., Karim, O. R., Sola-Ojo, F. E., Kayode, R. M. O., & Adeyemi, K. D. (2014). Investigation of the toxicity levels of supplemental dietary DL-methionine for poultry in a tropical environment. Wayamba Journal of Animal Science, 6, 975–980.

Arechiga-Flores, C. F., Cortés-Vidauri, Z., Hernández-Briano, P., Lozano-Domínguez, R. R., López-Carlos, M. A., Macías-Cruz, U., & Avendaño-Reyes, L. (2022). Hypocalcemia in the dairy cow. Review. Revista Mexicana De Ciencias Pecuarias, 13(4), 1025–1054. https://doi.org/10.22319/rmcp.v13i4.5277

Arnold, P. K., & Finley, L. W. S. (2023). Regulation and function of the mammalian tricarboxylic acid cycle. Journal of Biological Chemistry, 299(2), 102838. https://doi.org/10.1016/j.jbc.2022.102838

Aronsson, H. (2008). The galactolipid monogalactosyldiacylglycerol (MGDG) contributes to photosynthesis-related processes in Arabidopsis thaliana. Plant Signaling and Behavior, 3(12), 1093–1095. https://doi.org/10.4161/psb.3.12.6908

Arredondo-Ochoa, T., García-Almendárez, B. E., Escamilla-García, M., Martín-Belloso, O., Rossi-Márquez, G., Medina-Torres, L., & Regalado-González, C. (2017). Physicochemical and antimicrobial characterization of beeswax–starch food-grade nanoemulsions incorporating natural antimicrobials. International Journal of Molecular Sciences, 18, 2712. https://doi.org/10.3390/ijms18122712

Artzi, L., Bayer, E. A., & Moraïs, S. (2017). Cellulosomes: Bacterial nanomachines for dismantling plant polysaccharides. Nature Reviews Microbiology, 15(2), 83–95. https://doi.org/10.1038/nrmicro.2016.164

Aschenbach, J. R., Kristensen, N. B., Donkin, S. S., Hammon, H. M., & Penner, G. B. (2010). Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough. IUBMB Life, 62(12), 869–877. https://doi.org/10.1002/iub.400

Avilés-Gaxiola, S., Chuck-Hernández, C., & Serna, S. O. (2018). Inactivation methods of trypsin inhibitor in legumes: A review. Journal of Food Science, 83(1), 17–29. https://doi.org/10.1111/1750-3841.13985

Awuchi, C. G., Ondari, E. N., Twinomuhwezi, H., Igwe, V. S., & Omagwula, I. O. (2021). Aflatoxin B1 production, toxicity, mechanism of carcinogenicity, risk management, and regulations. Archives of Animal and Poultry Sciences, 1(4), 58–63. https://doi.org/10.19080/AAPS.2020.01.555568

Babashahi-Kouhanestani, M., Salehi, M., Mazloomi, S. M., & Almasi-Hashyani, A. (2014). Quantitative evaluation of vitamin C in industrial lemon juice by titration method. Journal of Biology and Today’s World, 3(6), 139–141. https://doi.org/10.15412/j.jbtw.01030605

Bach, A., Calsamiglia, S., & Stern, M. D. (2005). Nitrogen metabolism in the rumen. Journal of Dairy Science, 88(E. Suppl.), E9–E21. https://doi.org/10.3168/jds.S0022-0302(05)73133-7

Bacha, B. A., Karray, A., Daoud, L., Bouchaala, E., Ali, M. B., Gargouri, Y., & Ali, Y. Ben. (2011). Biochemical properties of pancreatic colipase from the common stingray Dasyatis pastinaca. Lipids in Health and Disease, 10(69), 1–7. https://doi.org/10.1186/1476-511X-10-69

Baghaei, B., & Skrifvars, M. (2020). All-Cellulose Composites: A Review of Recent Studies on Structure, Properties and Applications. Molecules, 25, 2836. https://doi.org/10.3390/molecules25122836

Baker, J. O. (2012). Public Understanding of Science between “science and religion.” Public Understanding of Science, 21(3), 340–353. https://doi.org/10.1177/0963662511434908

Bakunova, A. K., Nikolaeva, A. Y., Rakitina, T. V., Isaikina, T. Y., Khrenova, M. G., Boyko, K. M., Popov, V. O., & Bezsudnova, E. Y. (2021). The uncommon active site of d‐amino acid transaminase from haliscomenobacter hydrossis: Biochemical and structural insights into the new enzyme. Molecules, 26(5053), 1–18. https://doi.org/10.3390/molecules26165053

Balabanova, L., Averianova, L., Marchenok, M., Son, O., & Tekutyeva, L. (2021). Microbial and genetic resources for cobalamin (Vitamin b12) biosynthesis: From ecosystems to industrial biotechnology. International Journal of Molecular Sciences, 22(9), 4522. https://doi.org/10.3390/ijms22094522

Balakrishna, A. K., & Farid, M. (2020). Enrichment of rice with natural thiamine using high-pressure processing (HPP). Journal of Food Engineering, 283, 110040. https://doi.org/10.1016/j.jfoodeng.2020.110040

Baltaci, A. K., Yuce, K., & Mogulkoc, R. (2018). Zinc metabolism and metallothioneins. Biological Trace Element Research, 183(1), 22–31. https://doi.org/10.1007/s12011-017-1119-7

Bao, Y. M., & Choct, M. (2009). Trace mineral nutrition for broiler chickens and prospects of application of organically complexed trace minerals: A review. Animal Production Science, 49(4), 269–282. https://doi.org/10.1071/EA08204

Bar, A., & Hurwitz, S. (1987). Vitamin D metabolism and calbindin (calcium-binding protein) in aged laying hens. Journal of Nutrition, 117(10), 1775–1779. https://doi.org/10.1093/jn/117.10.1775

Barber, T. M., Kabisch, S., Pfeiffer, A. F. H., & Weickert, M. O. (2020). The health benefits of dietary fibre. Nutrients, 12(3209), 1–17.

Barbusiński, K. (2009). Henry John Horstman Fenton - short biography and brief history of Fenton reagent discovery. Chemistry-Didactics-Ecology-Metrology, 14, 101–105. http://tchie.uni.opole.pl/freeCDEM/CDEM09/Barbusinski_CDEM09(1-2).pdf

Barchiesi-Ferrari, C., & Anrique, R. (2011). Ruminal degradability of dry matter and crude protein from moist dehulled lupin and extruded rapeseed meal. Chilean Journal of Agricultural Research, 71(3), 430–436. https://doi.org/10.4067/S0718-58392011000300014

Bardagjy, A. S., & Steinberg, F. M. (2019). Relationship between HDL functional characteristics and cardiovascular health and potential impact of dietary patterns: A narrative review. Nutrients, 11(1231), 1–15. https://doi.org/10.3390/nu11061231

Battafarano, G., Chiellini, G., & Saponaro, F. (2022). Editorial: Calcium metabolism: Hormonal crosstalk, pathophysiology and disease. Frontiers in Medicine, 9, 899416. https://doi.org/10.3389/fmed.2022.899416

Beauchemin, K. A. (2018). Invited review: Current perspectives on eating and rumination activity in dairy cows. Journal of Dairy Science, 101, 4762–4784. https://doi.org/10.3168/jds.2017-13706

Bechara, N., Flood, V. M., & Gunton, J. E. (2022). A systematic review on the role of vitamin C in tissue healing. Antioxidants, 11(1605), 1–12. https://doi.org/10.3390/antiox11081605

Bedford, A., Beckett, L., Harthan, L., Wang, C., Jiang, N., Schramm, H., Guan, L. L., Daniels, K. M., Hanigan, M. D., & White, R. R. (2020). Ruminal volatile fatty acid absorption is affected by elevated ambient temperature. Scientific Reports, 10, 13092. https://doi.org/10.1038/s41598-020-69915-x

Beggs, M. R., Bhullar, H., Dimke, H., & Alexander, R. T. (2022). The contribution of regulated colonic calcium absorption to the maintenance of calcium homeostasis. Journal of Steroid Biochemistry and Molecular Biology, 220, 106098. https://doi.org/10.1016/j.jsbmb.2022.106098

Bender, A. E. (2007). Biological methods of evaluating protein quality. Proceedings of the Nutrition Society 1958, 17, 85–91. https://doi.org/10.1079/pns19580016

Berends, H., van den Borne, J. J. G. C., Røjen, B. A., van Baal, J., & Gerrits, W. J. J. (2014). Urea recycling contributes to nitrogen retention in calves fed milk replacer and low-protein solid feed. Journal of Nutrition, 144(7), 1043–1049. https://doi.org/10.3945/jn.114.191353

Berenguer, M., & Duester, G. (2022). Retinoic acid, RARs and early development. Journal of Molecular Endocrinology, 69(4), T59–T67. https://doi.org/10.1530/JME-22-0041

Bergman, E. N., Brockman, R. P., & Kaufman, C. F. (1974). Glucose metabolism in ruminants: comparison of whole-body turnover with production by gut, liver, and kidneys. Fed Proc, 33(7), 1849–1854. https://pubmed.ncbi.nlm.nih.gov/4834188/

Betancur-Murillo, C. L., Aguilar-Marín, B. S., & Jovel, J. (2023). Prevotella: A key player in ruminal metabolism. Microorganisms Review, 11, 1–18. https://doi.org/10.3390/microorganisms11010001

Bhat, J. R., Geelani, S. A., Khan, A. A., Roshan, R., & Rathod, S. G. (2022). Vitamin D toxicity due to self-prescription: A case report. Journal of Family Medicine and Primary Care, 11(4), 1561–1563. https://doi.org/10.4103/jfmpc.jfmpc_1525_21

Bhatt, N., Singh, N., Mishra, A., Kandpal, D., Rajneesh, R., & Jamwal, S. (2021). A detailed review of transportation stress in livestock and its mitigation techniques. International Journal of Livestock Research, 11(1), 30–41. https://doi.org/10.5455/ijlr.20201109102902

Bickerstaffe, R., Annison, E. F., & Linzell, J. L. (1974). The metabolism of glucose, acetate, lipids and amino acids in lactating dairy cows. The Journal of Agricultural Science Cambridge, 82(1), 71–85. https://doi.org/10.1017/S0021859600050243

Bieri, J. G., Briggs, G. M., Spivey, M. R., Polland, C. J., & Ortiz, L. O. (1956). Fat deficiency. Experimental Biology and Medicine, 93(2), 237–240. https://doi.org/10.3181/00379727-93-22718

Bikle, D., & Christakos, S. (2020). New aspects of vitamin D metabolism and action — addressing the skin as source and target. Nature Reviews Endocrinology, 16(4), 234–252. https://doi.org/10.1038/s41574-019-0312-5

Blaxter, K. L. (1956). The magnesium content of bone in hypomagnesaemic disorders of livestock. In G. E. W. Wolstenholme & C. M. O’Connor (Eds.), Bone Structure and Metabolism (pp. 117–184). https://doi.org/10.1002/9780470715222.ch10

Bojarczuk, A., Skąpska, S., Mousavi Khaneghah, A., & Marszałek, K. (2022). Health benefits of resistant starch: A review of the literature. Journal of Functional Foods, 93(May). https://doi.org/10.1016/j.jff.2022.105094

Bondan, C., Folchini, J. A., Noro, M., Quadros, D. L., Machado, K. M., & González, F. H. D. (2018). Milk composition of holstein cows: A retrospective study. Ciencia Rural, 48(12), e20180123. https://doi.org/10.1590/0103-8478cr20180123

Borgstrom, B., Erlanson-Albertsson, C., & Wieloch, T. (1979). Pancreatic colipase: Chemistry and physiology. Journal of Lipid Research, 20(7), 805–816. https://doi.org/10.1016/s0022-2275(20)40009-4

Boyer, P. D. (2002). A research journey with ATP synthase. Journal of Biological Chemistry, 277(42), 39045–39061. https://doi.org/10.1074/jbc.X200001200

Brito, A., Hertrampf, E., Olivares, M., Gaitán, D., Sánchez, H., Allen, L. H., & Uauy, R. (2012). Folate, vitamin B12 and human health. Revista Medica de Chile, 140, 1464–1475. https://doi.org/10.4067/S0034-98872012001100014

Brown, R. M. (2004). Cellulose Structure and Biosynthesis: What is in Store for the 21st Century? Journal of Polymer Science, Part A: Polymer Chemistry, 42(3), 487–495. https://doi.org/10.1002/pola.10877

Brugger, D., Wagner, B., Windisch, W. M., Schenkel, H., Schulz, K., Südekum, K. H., Berk, A., Pieper, R., Kowalczyk, J., & Spolders, M. (2022). Review: Bioavailability of trace elements in farm animals: definition and practical considerations for improved assessment of efficacy and safety. Animal, 16(8), 100598. https://doi.org/10.1016/j.animal.2022.100598

Buchholz, M., Drotleff, A. M., & Ternes, W. (2012). Thiamin (vitamin B 1) and thiamin phosphate esters in five cereal grains during maturation. Journal of Cereal Science, 56(1), 109–114. https://doi.org/10.1016/j.jcs.2011.11.009

Bunchasak, C. (2009). Role of dietary methionine in poultry production. Journal of Poultry Science, 46(3), 169–179. https://doi.org/10.2141/jpsa.46.169

Bunik, V., Artiukhov, A., Aleshin, V., & Mkrtchyan, G. (2016). Multiple forms of glutamate dehydrogenase in animals: Structural determinants and physiological implications. Biology, 5(53), 1–30. https://doi.org/10.3390/biology5040053

Burns, J. J. (1957). Missing step in man, monkey and guinea pig required for the biosynthesis of L-ascorbic acid. Nature, 180(4585), 553–553. https://doi.org/10.1038/180553a0

Burns, T. (2011). Fatty Acids and Lipogenesis in Ruminant Adipocytes [Clemson University]. https://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=1840&context=all_dissertations

Byrne, L., & Murphy, R. A. (2022). Relative bioavailability of trace minerals in production animal nutrition: A review. Animals, 12, 1981. https://doi.org/10.3390/ani12151981

Cafrune, M. M., Rebuffi, G. E., Cabrera, R. H., & Aguirre, D. H. (1996). cafrune fasciola.PDF. Vet. Arg., 13(128), 570–574.

Cainzos, J. M., Andreu-Vazquez, C., Guadagnini, M., Rijpert-Duvivier, A., & Duffield, T. (2022). A systematic review of the cost of ketosis in dairy cattle. Journal of Dairy Science, 105(7), 6175–6195. https://doi.org/10.3168/jds.2021-21539

Calliope, S., Wagner, J., & Samman, N. (2019). Physicochemical and Functional Characterization of Potato Starch (Solanum Tuberosum ssp. Andigenum) from the Quebrada de Humahuaca, Argentina. Starch, 1900069, 1–9. https://doi.org/10.1002/star.201900069

Calvillo, Á., Pellicer, T., Carnicer, M., & Planas, A. (2022). Bioprocess strategies for vitamin B12 production by microbial fermentation and its market applications. Bioengineering, 9(365), 1–24. https://doi.org/10.3390/bioengineering9080365

Candelario, N., & Klein, C. (2022). Megaloblastic anemia due to severe vitamin B12 deficiency. Cleveland Clinic Journal of Medicine, 89(1), 8–9. https://doi.org/10.3949/ccjm.89a.21041

Cappelaere, L., Le Cour Grandmaison, J., Martin, N., & Lambert, W. (2021). Amino Acid Supplementation to Reduce Environmental Impacts of Broiler and Pig Production: A Review. Frontiers in Veterinary Science, 8, 1–14. https://doi.org/10.3389/fvets.2021.689259

Carazo, A., Macáková, K., Matoušová, K., Krčmová, L. K., Protti, M., & Mladěnka, P. (2021). Vitamin A update: Forms, sources, kinetics, detection, function, deficiency, therapeutic use and toxicity. Nutrients, 13(1703), 1–36. https://doi.org/10.3390/nu13051703

Cardinault, N., Doreau, M., Poncet, C., & Nozière, P. (2006). Digestion and absorption of carotenoids in sheep given fresh red clover. Animal Science, 82, 49–55. https://doi.org/10.1079/ASC200514

Carlos-Amaya, F., Osorio-Diaz, P., Agama-Acevedo, E., Yee-Madeira, H., & Bello-Pérez, L. A. (2011). Physicochemical and Digestibility Properties of Double-Modified Banana (Musa paradisiaca L.) Starches. Journal of Agricultural and Food Chemistry, 59, 1376–1382. https://doi.org/10.1021/jf1035004

Carlson, P. (2022). Choose the best cattle mineral supplementation for your operation. Farm Journal, 9. https://www.drovers.com/news/beef-production/choose-best-cattle-mineral-supplementation-your-operation

Carpenter, K. J. (2012). The discovery of thiamin. Annals of Nutrition and Metabolism, 61(3), 219–223. https://doi.org/10.1159/000343109

Carretto, M. V., Cuerdo, M. P., Direnzo, M. G., & Di Vito, M. V. (2002). El aceite de oliva: beneficios en la salud. Invenio, 5(8), 141–149. https://www.redalyc.org/pdf/877/87750812.pdf

Carroll, C., Olsen, K. D., Ricks, N. J., Dill-McFarland, K. A., Suen, G., Robinson, T. F., & Chaston, J. M. (2019). Bacterial communities in the alpaca gastrointestinal tract vary with diet and body site. Frontiers in Microbiology, 9(3334), 1–10. https://doi.org/10.3389/fmicb.2018.03334

Carta, S., Correddu, F., Battacone, G., Pulina, G., & Nudda, A. (2022). Comparison of milk odd- and branched-chain fatty acids among human, dairy species and artificial substitutes. Foods, 11(4148), 1–11. https://doi.org/10.3390/foods11244118

Cerón, M. E., Marcoppido, G., Dekker, A., Fondevila, M., De La Fuente, G., Morici, G., & Cravero, S. (2016). Ciliate protozoa of the forestomach of llamas (Lama glama) from locations at different altitude in Argentina. Zootaxa, 4067(1), 49–56. https://doi.org/10.11646/zootaxa.4067.1.3

Cerqueira, N. M. F. S. A., Oliveira, E. F., Gesto, D. S., Santos-Martins, D., Moreira, C., Moorthy, H. N., Ramos, M. J., & Fernandes, P. A. (2016). Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry, 55(39), 5483–5506. https://doi.org/10.1021/acs.biochem.6b00342

Chalvon-Demersay, T., Luise, D., Le Floc’h, N., Tesseraud, S., Lambert, W., Bosi, P., Trevisi, P., Beaumont, M., & Corrent, E. (2021). Functional Amino Acids in Pigs and Chickens: Implication for Gut Health. Frontiers in Veterinary Science, 8(May), 1–13. https://doi.org/10.3389/fvets.2021.663727

Chaney, A. L., & Marbach, E. P. (1962). Modified reagents for determination of urea and ammonia. Clinical Chemistry, 8, 130–132. https://doi.org/10.1093/clinchem/8.2.130

Chen, M., Liu, C.-T., & Tang, Y. (2020). Discovery and biocatalytic application of a PLP-dependent amino acid γ-substitution enzyme that catalyzes C–C bond formation. J. Am. Chem. Soc., 142(23), 10506–19515. https://doi.org/10.1021/jacs.0c03535

Chen, P., Li, Y., Shen, Y., Cao, Y., Li, Q., Wang, M., Liu, M., Wang, Z., Huo, Z., Ren, S., Gao, Y., & Li, J. (2022). Effect of Dietary Rumen-Degradable Starch to Rumen-Degradable Protein Ratio on In Vitro Rumen Fermentation Characteristics and Microbial Protein Synthesis. Animals, 12(2633), 1–13. https://doi.org/10.3390/ani12192633

Cheng, Z., Meng, Z., Tan, D., Datsomor, O., Zhan, K., Lin, M., & Zhao, G. (2022). Effects of supplementation of sodium acetate on rumen fermentation and microbiota in postpartum dairy cows. Frontiers in Microbiology, 13(November), 1–13. https://doi.org/10.3389/fmicb.2022.1053503

Cherukad, J., Wainwright, V., & Watson, E. D. (2012). Spatial and temporal expression of folate-related transporters and metabolic enzymes during mouse placental development. Placenta, 33(5), 440–448. https://doi.org/10.1016/j.placenta.2012.02.005

Chiricozzi, E., Lunghi, G., Di Biase, E., Fazzari, M., Sonnino, S., & Mauri, L. (2020). GM1 ganglioside is a key factor in maintaining the mammalian neuronal functions avoiding neurodegeneration. Int. J. Mol. Sci., 21(868), 1–29. https://doi.org/10.3390/ijms21030868

Chossat, M. (1842). Note sur le système ossèux. C. R. Acad. Sei., 14, 451–454. https://link.springer.com/book/10.1007/978-94-011-8067-2

Christakos, S., Dhawan, P., Porta, A., Mady, L. J., & Seth, T. (2011). Vitamin D and intestinal calcium absorption. Molecular and Cellular Endocrinology, 347(1–2), 25–29. https://doi.org/10.1016/j.mce.2011.05.038

Christakos, S., Dhawan, P., Verstuyf, A., Verlinden, L., & Carmeliet, G. (2016). Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiological Reviews, 96, 365–408. https://doi.org/10.1152/physrev.00014.2015

Christie, W. W. (2022). critie vit B5.pdf. The Lipid Web. https://www.lipidmaps.org/resources/lipidweb/lipidweb_html/lipids/simple/coA/index.htm

Chu, C., Yu, L., Henry-Berger, J., Ru, Y.-F., Kocer, A., Champroux, A., Li, Z.-T., He, M., Xie, S.-S., Ma, W.-B., Ni, M.-J., Ni, Z.-M., Guo, Y.-L., Fei, Z.-L., Gou, L.-T., Liu, Q., Sharma, S., Zhou, Y., Liu, M.-F., … Zhang, Y.-L. (2020). Knockout of glutathione peroxidase 5 down-regulates the piRNAs in the caput epididymidis of aged mice. Asian Journal of Andrology, 22, 590–601. https://doi.org/10.4103/aja.aja_3_20

Clarke, G. L., Allen, A. M., Small, J. D., & Lock, A. (1980). Subclinical scurvy in the guinea pig. Veterinary Pathology, 17(1), 40–44. https://doi.org/10.1177/030098588001700104

Clauss, M., & Hummel, J. (2017). Physiological adaptations of ruminants and their potential relevance for production systems. Brazilian Journal of Animal Science, 46(7), 606–613. https://doi.org/10.1590/S1806-92902017000700008

Clauss, M., Schiele, K., Ortmann, S., Fritz, J., Codron, D., Hummel, J., & Kienzle, E. (2014). The effect of very low food intake on digestive physiology and forage digestibility in horses. Journal of Animal Physiology and Animal Nutrition, 98(1), 107–118. https://doi.org/10.1111/jpn.12053

Colburn, M. W., Evans, J. L., & Ramage, C. H. (1968). Apparent and True Digestibility of Forage Nutrients by Ruminant Animals. Journal of Dairy Science, 51(9), 1450–1457. https://doi.org/10.3168/jds.S0022-0302(68)87211-X

Colotta, F., Jansson, B., & Bonelli, F. (2017). Modulation of inflammatory and immune responses by vitamin D. Journal of Autoimmunity, 85, 78–97. https://doi.org/10.1016/j.jaut.2017.07.007

Columbus, D., & De Lange, C. F. M. (2012). Evidence for validity of ileal digestibility coefficients in monogastrics. British Journal of Nutrition, 108(SUPPL. 2), S264–S272. https://doi.org/10.1017/S0007114512002334

Contreras-Aguilar, M. D., Tecles, F., Martínez-Subiela, S., Escribano, D., Bernal, L. J., & Cerón, J. J. (2017). Detection and measurement of alpha-amylase in canine saliva and changes after an experimentally induced sympathetic activation. BMC Veterinary Research, 13(1), 1–6. https://doi.org/10.1186/s12917-017-1191-4

Cook, A. K. (2012). Monitoring methods for dogs and cats with diabetes mellitus. Journal of Diabetes Science and Technology, 6(3), 491–495. https://doi.org/10.1177/193229681200600302

Corbee, R. J., Vaandrager, A. B., Kik, M. J. L., Molenaar, M. R., & Hazewinkel, H. A. W. (2015). Cutaneous vitamin D synthesis in carnivorous species. Journal of Veterinary Medicine and Research, 2(4), 1031.

Cranenburg, E. C. M., Schurgers, L. J., & Vermeer, C. (2007). Vitamin K: The coagulation vitamin that became omnipotent. Thrombosis and Haemostasis, 98, 120–125. https://doi.org/10.1160/TH07-04-0266

Creek, R. D., Parker, H. E., Hauge, S. M., Andrews, F. N., & Carrick, C. W. (1960). The influence of body weight on the experimental production of perosis by manganese deficiency ,. Poultry Science, 39(1), 96–98. https://doi.org/10.3382/ps.0390096

Cunningham, H. M., & Brisson, G. J. (1957). The endogenous urinary and metabolic fecal nitrogen excretions of newborndairy calves. Canadian Journal of Animal ScienceVolume 37, Number 2, December 1957, 37(2), 152–156. https://doi.org/10.4141/cjas57-022

Czumaj, A., Szrok-Jurga, S., Hebanowska, A., Turyn, J., Swierczynski, J., Sledzinski, T., & Stelmanska, E. (2020). The pathophysiological role of CoA. International Journal of Molecular Sciences, 21(9057), 1–30. https://doi.org/10.3390/ijms21239057

D’Angelo, G., Moorthi, S., & Luberto, C. (2018). Role and function of sphingomyelin biosynthesis in the development of cancer. Advances in Cancer Research, 140, 1–36. https://doi.org/10.1016/bs.acr.2018.04.009

D’Aquila, T., Hung, Y.-H., Carreiro, A., & Buhman, K. K. (2016). Recent discoveries on absorption of dietary fat: presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes. Biochim Biophys Acta., 1861(8PtA), 730–747. https://doi.org/10.1016/j.bbalip.2016.04.012

Dai, Y., Tang, H., & Pang, S. (2021). The crucial roles of phospholipids in aging and lifespan regulation. Frontiers in Physiology, 12, 775648. https://doi.org/10.3389/fphys.2021.775648

Dallas, T., Holian, L. A., & Foster, G. (2020). What determines parasite species richness across host species? Journal of Animal Ecology, 89(8), 1750–1753. https://doi.org/10.1111/1365-2656.13276

Danes, M. A. C., Hanigan, M. D., Arriola Apelo, S. I., Dias, J. D. L., Wattiaux, M. A., & Broderick, G. A. (2020). Post-ruminal supplies of glucose and casein, but not acetate, stimulate milk protein synthesis in dairy cows through differential effects on mammary metabolism. Journal of Dairy Science, 103(7), 6218–6232. https://doi.org/10.3168/jds.2019-18086

Dann, M., & Cowgill, G. R. (1935). The vitamin C requirement of the guinea pig. Journal of Nutrition, 9(4), 507–519. https://doi.org/10.1093/jn/9.4.507

Dashty, M. (2013). A quick look at biochemistry: Carbohydrate metabolism. Clinical Biochemistry, 46(15), 1339–1352. https://doi.org/10.1016/j.clinbiochem.2013.04.027

Davies, H. L., Robinson, T. F., Roeder, B. L., Sharp, M. E., Johnston, N. P., Christensen, A. C., & Schaalje, G. B. (2007). Digestibility, nitrogen balance, and blood metabolites in llama (Lama glama) and alpaca (lama pacos) fed barley or barley alfalfa diets. Small Ruminant Research, 73, 1–7. https://doi.org/10.1016/j.smallrumres.2006.10.006

Davies, P. R. (2022). Parakeratosis in pigs. MSD Veterinary Manual, 2. https://www.msdvetmanual.com/integumentary-system/parakeratosis/parakeratosis-in-pigs

Davis, C. L., Brown, R. E., Staubus, J. R., & Nelson, W. O. (1960). Availability and metabolism of various substrates in ruminants. II. Rate of acetate oxidation as affected by availability of substrate. Journal of Dairy Science, 43(2), 241–249. https://doi.org/10.3168/jds.S0022-0302(60)90146-6

Day, L., Cakebread, J. A., & Loveday, S. M. (2022). Food proteins from animals and plants: Differences in the nutritional and functional properties. Trends in Food Science and Technology, 119, 428–442. https://doi.org/10.1016/j.tifs.2021.12.020

de Grip, W. J., & Ganapathy, S. (2022). Rhodopsins: An excitingly versatile protein species for research, development and creative engineering. Frontiers in Chemistry, 10(879609), 1–48. https://doi.org/10.3389/fchem.2022.879609

de Grip, W. J., & Lugtenburg, J. (2022). Isorhodopsin: An Undervalued Visual Pigment Analog. Colorants, 1(3), 256–279. https://doi.org/10.3390/colorants1030016

De Vadder, F., Petia, K.-D., Zitoun, C., Duchampt, A., Bäckhed, F., & Mithieux, G. (2016). Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metabolism, 24(1), 151–157. https://doi.org/10.1016/j.cmet.2016.06.013

de Vries, S., van den Borne, J. J. G. C., & Kwakkel, R. P. (2022). Reflux of 15N-labeled uric acid after intracloacal infusion in broiler chickens fed low- or high-protein diets. Poultry Science, 101(4). https://doi.org/10.1016/j.psj.2022.101724

Dearing, M. D., & Kohl, K. D. (2017). Beyond fermentation: Other important services provided to endothermic herbivores by their gut microbiota. Integrative and Comparative Biology, 57(4), 723–731. https://doi.org/10.1093/icb/icx020

Delicano, R. A., Hammar, U., Egenvall, A., Westgarth, C., Mubanga, M., Byberg, L., Fall, T., & Kennedy, B. (2020). The shared risk of diabetes between dog and cat owners and their pets: Register based cohort study. The BMJ, 371(m4337), 1–11. https://doi.org/10.1136/bmj.m4337

Deng, Y., Wierenga, P. A., Schols, H. A., Sforza, S., & Gruppen, H. (2017). Effect of Maillard induced glycation on protein hydrolysis by lysine/arginine and non-lysine/arginine specific proteases. Food Hydrocolloids, 69, 210–219. https://doi.org/10.1016/j.foodhyd.2017.02.007

Deters, E. L., & Hansen, S. L. (2020). Linking road transportation with oxidative stress in cattle and other species. Applied Animal Science, 36(2), 183–200. https://doi.org/10.15232/aas.2019-01956

Detmann, E., & Valadares, S. C. (2010). On the estimation of non-fibrous carbohydrates in feeds and diets. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 62(4), 980–984. https://doi.org/10.1590/S0102-09352010000400030

Dhital, S., Lin, A. H. M., Hamaker, B. R., Gidley, M. J., & Muniandy, A. (2013). Mammalian Mucosal α-Glucosidases Coordinate with α-Amylase in the Initial Starch Hydrolysis Stage to Have a Role in Starch Digestion beyond Glucogenesis. PLoS ONE, 8(4), e62546. https://doi.org/10.1371/journal.pone.0062546

Dijkstra, J., Boer, H., Van Bruchem, J., Bruining, M., & Tamminga, S. (1993). Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, pH and rumen liquid volume. British Journal of Nutrition, 69(2), 385–396. https://doi.org/10.1079/bjn19930041

Dijkstra, J., Reynolds, C. K., Kebreab, E., Bannink, A., Ellis, J. L., France, J., & van Vuuren, A. M. (2013). Challenges in ruminant nutrition: towards minimal nitrogen losses in cattle. In J. W. Oltjen (Ed.), Energy and Protein metabolism and nutrition is sustainable animal protection (Issue 134, pp. 47–58). EAAP publication No. 134. https://doi.org/10.3920/978-90-8686-781-3_3

Dini, C., Doporto, M. C., Viña, S. Z., & García, M. A. (2014). Cassava flour and starch as differentiated ingredients for gluten free products. In F. P. Molinari (Ed.), Food and Beverage Consumption and Health: Cassava Production, Nutritional Properties and Health Effects (pp. 87–114). Nova Science Publishers. https://ri.conicet.gov.ar/handle/11336/153512

Doepel, L., Lobley, G. E., Bernier, J. F., Dubreuil, P., & Lapierre, H. (2009). Differences in splanchnic metabolism between late gestation and early lactation dairy cows. Journal of Dairy Science, 92(7), 3233–3243. https://doi.org/10.3168/jds.2008-1595

Dong, W., Li, J., Li, Z., Zhang, S., Li, X., Yang, C., Liu, L., & Zhang, S. (2020). Physicochemical properties and energy content of yellow dent corn from different climatic origins in growing pigs. Asian-Australasian Journal of Animal Sciences, 33(11), 1787–1796. https://doi.org/10.5713/ajas.19.0715

Drouin, G., Godin, J.-R., & Pagé, B. (2011). The genetics of vitamin C loss in vertebrates. Current Genomics, 12(5), 371–378. https://doi.org/10.2174/138920211796429736

Ducker, G. S., & Rabinowitz, J. D. (2017). One-carbon metabolism in liver health and disease. Cell Metab, 25(1), 761–765. https://doi.org/10.1016/B978-0-12-804274-8.00054-0

Duffy, S. K., Kelly, A. K., Rajauria, G., & O’Doherty, J. V. (2018). Biofortification of meat with vitamin D. CAB Reviews, 13(45), 1–12. https://doi.org/10.1079/PAVSNNR201813045

Dulphy, J. P., Dardillat, C., Jailler, M., & Jouany, J. P. (1994). Comparison of the intake and digestibility of different diets in Ilamas and sheep: a preliminary study. Annales de Zootechnie, 43(4), 379–387. https://doi.org/10.1051/animres:19940407

Duplessis, M., Blais, L., Poisson, W., & Girard, C. L. (2020). Technical note: Extrapolation of hepatic glycogen concentration of the whole organ by performing a liver biopsy. Journal of Dairy Science, 103(5), 4858–4862. https://doi.org/10.3168/jds.2019-17905

Eakin, R. E., Snell, E. E., & Williams, R. J. (1941). The concentration and assay of avidin, the injury-producing protein in raw egg white. Journal of Biological Chemistry, 140(2), 535–543. https://doi.org/10.1016/s0021-9258(18)51344-2

El-Badawi, A. Y., Hassan, A., Abedo, A., Yacout, M., Khalel, M., Abou-Ward, G., Helal, F., & El-Naggar, S. (2021). Response of camels and cow calves to 100% and 50% roughage rations fed consequently. Bulletin of the National Research Centre, 45(172), 1–9. https://doi.org/10.1186/s42269-021-00626-7

Elliot, J. M. (1980). Propionate metabolism and vitamin B12. In Y. Ruckebusch & P. Thivend (Eds.), Digestive Physiology and Metabolism in Ruminants (Vol. 1, Issue 2, pp. 485–503). Springer, Dordrecht. https://doi.org/DOI: 10.1007/978-94-011-8067-2_23

Eme, L., & Doolittle, W. F. (2015). Archaea. Current Biology, 25(19), R851–R855. https://doi.org/10.1016/j.cub.2015.05.025

Emmert, J. L., & Baker, D. H. (1997). Use of the ideal protein concept for precision formulation of amino acid levels in broiler diets. Journal of Applied Poultry Research, 6(4), 462–470. https://doi.org/10.1093/japr/6.4.462

Erlanson-albertsson, C., & York, D. (1997). Enterostatin-A peptide regulating fat intake. Obesity Research, 5(4), 360–372. https://doi.org/10.1002/j.1550-8528.1997.tb00565.x

Esdale, W. J., Broderick, G. A., & Satter, L. D. (1968). Measurement of ruminal volatile fatty acid production from alfalfa hay or corn silage rations using a continuous infusion isotope dilution technique. Journal of Dairy Science, 51(11), 1823–1830. https://doi.org/10.3168/jds.S0022-0302(68)87285-6

Espinoza, J. R., Terashima, A., Herrera-Velit, P., & Marcos, L. A. (2010). Fasciolosis humana y animal en el Perú: Impacto en la economía de las zonas endémicas. Rev Peru Med Exp Salud Publica, 27(4), 604–612.

Esworthy, R. S., Doroshow, J. H., & Chu, F. F. (2022). The beginning of GPX2 and 30 years later. Free Radical Biology and Medicine, 188, 419–433. https://doi.org/10.1016/j.freeradbiomed.2022.06.232

Eugenio, F. A., Milgen, J. Van, Duperray, J., Sergheraert, R., & Floc, N. Le. (2023). Feeding pigs amino acids as protein-bound or in free form influences postprandial concentrations of amino acids, metabolites, and insulin. Animal, 17(1), 100684. https://doi.org/10.1016/j.animal.2022.100684

Eugenio, F. A., van Milgen, J., Duperray, J., Sergheraert, R., & Le Floc’h, N. (2022). Postprandial plasma amino acid and metabolite kinetics of adult and growing pigs fed a diet with a balanced or unbalanced amino acid profile. Animal, 16(11), 100663. https://doi.org/10.1016/j.animal.2022.100663

Faber, C. L., Deem, J. D., Campos, C. A., Taborsky, G. J., & Morton, G. J. (2020). CNS control of the endocrine pancreas. Diabetologia, 63(10), 2086–2094. https://doi.org/10.1007/s00125-020-05204-6

Fahy, E., Cotter, D., Sud, M., & Subramaniam, S. (2011). Lipid classification, structures and tools. Biochim Biophys Acta, 1811(11), 637–647. https://doi.org/10.1016/j.bbalip.2011.06.009

Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H., Murphy, R. C., Raetz, C. R. H., Russell, D. W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., Van Meer, G., VanNieuwenhze, M. S., White, S. H., Witztum, J. L., & Dennis, E. A. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46(5), 839–861. https://doi.org/10.1194/jlr.E400004-JLR200

Fahy, E., Subramaniam, S., Murphy, R. C., Nishijima, M., Raetz, C. R. H., Shimizu, T., Spener, F., Van Meer, G., Wakelam, M. J. O., & Dennis, E. A. (2009). Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research, 50(Suppl.), S9–S14. https://doi.org/10.1194/jlr.R800095-JLR200

Fan, Y., Evans, C. R., & Ling, J. (2017). Rewiring protein synthesis: From natural to synthetic amino acids. Biochim Biophys Acta., 1861(11 Pt B), 3029–3029. https://doi.org/10.1016/j.bbagen.2017.01.014.

Faye, B. (2016). The camel, new challenges for a sustainable development. Tropical Animal Health and Production, 48(4), 689–692. https://doi.org/10.1007/s11250-016-0995-8

Felig, P. (1973). The glucose-alanine cycle. Metabolism, 22(2), 179–207. https://doi.org/10.1016/0026-0495(73)90269-2

Felsenfeld, A. J., & Levine, B. S. (2015). Calcitonin, the forgotten hormone: Does it deserve to be forgotten? Clinical Kidney Journal, 8(2), 180–187. https://doi.org/10.1093/ckj/sfv011

Fenner, H., & Elliot, J. M. (1963). Quantitative method for determining the steam volatile fatty acids in rumen fluid by gas chromatograph. 22(3), 624–627. https://doi.org/10.2527/jas1963.223624x

Ferrari, L., Fumagalli, F., Rizzi, N., Grandi, E., Vailati, S., Manoni, M., Ottoboni, M., Cheli, F., & Pinotti, L. (2022). An eight-year survey on aflatoxin B1 indicates high feed safety in animal feed and forages in Northern Italy. Toxins, 14(763), 1–12. https://doi.org/10.3390/ toxins14110763

Field, C. J., & Robinson, L. (2019). Dietary Fats. Advances in Nutrition, 10(4), 722–724. https://doi.org/10.1093/advances/nmz052

Finney, J., Moon, H.-J., Ronnebaum, T., Lantz, M., & Mure, M. (2014). Human copper-dependent amine oxidases. Arch Biochem Biophys, 546, 19–32. https://doi.org/10.1016/j.abb.2013.12.022

Fleet, J. C. (2022). Vitamin D-mediated regulation of intestinal calcium absorption. Nutrients, 14, 3351. https://doi.org/10.3390/nu14163351

Flohé, L., Toppo, S., & Orian, L. (2022). The glutathione peroxidase family: Discoveries and mechanism. Free Radical Biology and Medicine, 187, 113–122. https://doi.org/10.1016/j.freeradbiomed.2022.05.003

Flores, B., Pinedo, R., Suárez, F., Angelats, R., & Chávez, A. (2014). Comunidades rurales de Jauja , Perú / Prevalency of fascioliasis in llamas and alpacas in two rural communities of Jauja , Peru. Rev Inv Vet Perú, 25(2), 284–292.

Flurkey, W. H. (2010). Yield of ATP molecules per glucose molecule. Journal of Chemical Education, 87(3), 271. https://doi.org/10.1021/ed800102g

Forsgård, R. A. (2019). Lactose digestion in humans: Intestinal lactase appears to be constitutive whereas the colonic microbiome is adaptable. American Journal of Clinical Nutrition, 110(2), 273–279. https://doi.org/10.1093/ajcn/nqz104

Förster, A., Kühne, Y., & Henle, T. (2018). Dietary intake and urinary excretion of Maillard reaction products (MRPs). Czech Journal of Food Sciences, 22(SI-Chem. Reactions in Foods V), S96–S98. https://doi.org/10.17221/10625-cjfs

Fouhse, J. M., & Zijlstra, R. T. (2018). Impact of resistant vs. digested starch on starch energy value in the pig gut. Bioactive Carbohydrates and Dietary Fibre, 15, 12–20. https://doi.org/10.1016/j.bcdf.2017.08.001

Fowler, M. E. (2010). Camelids Are Not Ruminants. In M. E. Fowler & W. Bravo (Eds.), Medicine and Surgery of Camelids (Third, pp. 375–385). Wiley-Blackwell. https://doi.org/10.1016/B978-141604047-7.50049-X

Freeman, S. (2019). Enzymes in biochemical reactions — Role & importance. Expii. https://www.expii.com/t/enzymes-in-biochemical-reactions-role-importance-10372

Frei, M. (2013). Lignin: Characterization of a multifaceted crop component. The Scientific World Journal, 2013(436517), 1–25. https://doi.org/10.1155/2013/436517

French, A. D. (2017). Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose, 24(11), 4605–4609. https://doi.org/10.1007/s10570-017-1450-3

Frieden, E. (1985). New perspectives on the essential trace elements. Journal of Chemical Education, 62(11), 917–923. https://doi.org/10.1021/ed062p917

Friedman, M. A., & Kohn, D. H. (2022). Calcium and phosphorus supplemented diet increases bone volume after thirty days of high speed treadmill exercise in adult mice. Scientific Reports, 12, 14616. https://doi.org/10.1038/s41598-022-19016-8

Fruton, J. (2002). A History of Pepsin and Related Enzymes. Quarterly Review of Biology, 77(2), 127–147. https://doi.org/10.2307/3901721

Fu, Z., Zhong, T., Wan, X., Xu, L., Yang, H., Han, H., & Wang, Z. (2022). Effects of dietary vitamin E supplementation on reproductive performance, egg characteristics, antioxidant capacity, and immune status in breeding geese during the late laying period. Antioxidants, 11(2070), 1–18. https://doi.org/10.3390/antiox11102070

Fuente-Martín, E., Mellado-Gil, J. M., Cobo-Vuilleumier, N., Martín-Montalvo, A., Romero-Zerbo, S. Y., Contreras, I. D., Hmadcha, A., Soria, B., Bermudo, F. M., Reyes, J. C., Bermúdez-Silva, F. J., Lorenzo, P. I., & Gauthier, B. R. (2019). Dissecting the brain/islet axis in metabesity. Genes, 10(350), 1–20. https://doi.org/10.3390/genes10050350

Fujii, J., Homma, T., & Osaki, T. (2022). Superoxide radicals in the execution of cell death. Antioxidants, 11, 501. https://doi.org/10.3390/antiox11030501

Fukuwatari, T., & Shibata, K. (2013). Nutritional aspect of tryptophan metabolism. International Journal of Tryptophan Research, 6(Suppl. 1), 3–8. https://doi.org/10.4137/IJTR.S11588

Gabriel, I., Lessire, M., Mallet, S., & Guillot, J. F. (2006). Microflora of the digestive tract: Critical factors and consequences for poultry. World’s Poultry Science Journal, 62(3), 499–511. https://doi.org/10.1079/WPS2006111

Galić, L., Galić, V., Ivezić, V., Zebec, V., Jović, J., Ðikić, M., Filipović, A., Manojlović, M., Almås, Å. R., & Lončarić, Z. (2023). Modelling leverage of different soil properties on selenium water-solubility in soils of Southeast Europe. Agronomy, 13(824), 1–17. https://doi.org/10.3390/ agronomy13030824

Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K. B., Ostolaza, H., & Martín, C. (2020). Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Sciences, 21(17), 1–34. https://doi.org/10.3390/ijms21176275

Galli, F., Bonomini, M., Bartolini, D., Zatini, L., Reboldi, G., Marcantonini, G., Gentile, G., Sirolli, V., & Di Pietro, N. (2022). Vitamin E (Alpha‐Tocopherol) metabolism and nutrition in chronic kidney disease. Antioxidants, 11(0), 1–19. https://doi.org/10.3390/antiox11050989

Ganjoor, M. S., Ghaedi, A., Rastian-Nassab, A., Salahiardekani, M. M., Hossaini, S. A., & Falahat, E. (2018). Comparison blood glucose assay of rainbow trout broodstocks (Oncorhynchus mykiss) before and after feeding. Iranian Scientific Fisheries Journal, 27(6), 171–175. https://doi.org/10.22092/ISFJ.2019.118093

García-López, E., & Mora, M. (2012). Importance of the expression and activity of B-carotene 15, 15’ monooxygenase and vitamin A. Its role in animal production. A Review. Archivos Latinoamericanos de Producción Animal, 20(3–4), 95–112. https://ojs.alpa.uy/index.php/ojs_files/article/view/984/703

Garrity, G., Timothy, G. L., Cole, R. J., Harrison, S. H., Euzéby, J., & Tindall, B. J. (2007). Taxonomic Outline of the Bacteria and Archaea. In Taxonomic Outline of the Bacteria and Archaea (Formerly the Taxonomic Outline of the Prokaryotes). https://doi.org/10.1601/toba7.7

Gaudré, D., & Quiniou, N. (2009). What mineral and vitamin levels to recommend in swine diets? Revista Brasileira de Zootecnia, 38, 190–200. https://doi.org/10.1590/s1516-35982009001300019

Getahun, D., Alemneh, T., Akeberegn, D., Getabalew, M., & Zewdie, D. (2019). Urea metabolism and recycling in ruminants. Biomedical Journal of Scientific & Technical Research, 20(1), 14790–14796. https://doi.org/10.26717/bjstr.2019.20.003401

Ghazali, N. I., Mohd Rais, R. Z., Makpol, S., Chin, K. Y., Yap, W. N., & Goon, J. A. (2022). Effects of tocotrienol on aging skin: A systematic review. Frontiers in Pharmacology, 13(1006198), 1–12. https://doi.org/10.3389/fphar.2022.1006198

Gibson, L. J. (2012). The hierarchical structure and mechanics of plant materials. Journal of the Royal Society Interface, 9(76), 2749–2766. https://doi.org/10.1098/rsif.2012.0341

Glossmann, H. H. (2010). Origin of 7-dehydrocholesterol (Provitamin D) in the skin. Journal of Investigative Dermatology, 130(8), 2139–2141. https://doi.org/10.1038/jid.2010.118

Goff, J. P. (2018). Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. J Dairy Sci, 101(4), 2763–2813. https://doi.org/10.3168/jds.2017-13112

González-Montaña, J. R., Escalera-Valente, F., Alonso, A. J., Lomillos, J. M., Robles, R., & Alonso, M. E. (2020). Relationship between vitamin B12 and cobalt metabolism in domestic ruminant: An update. Animals, 10(1855), 1–36. https://doi.org/10.3390/ani10101855

Gonzalez-Rivas, P. A., Lean, G. R., Chambers, M., & Liu, J. (2023). A trace mineral injection before joining and lambing increases marking percentages and lamb weights on diverse farms in Victoria, Australia. Animals, 13(1), 1–11. https://doi.org/10.3390/ani13010178

González, L. A., Kyriazakis, I., & Tedeschi, L. O. (2018). Precision nutrition of ruminants: Approaches, challenges and potential gains. Animal, 12(S2), s246–s261. https://doi.org/10.1017/S1751731118002288

Greaves, J. P. (1963). Protein digestibility and ingestion. Nature, 197, 499–500. https://www.nature.com/articles/197499a0

Green, A. S., & Fascetti, A. J. (2016). Meeting the vitamin A requirement: The efficacy and importance of β-carotene in animal species. Scientific World Journal, 2016(7393620), 1–22. https://doi.org/10.1155/2016/7393620

Griffo, A., Bosco, N., Pagano, A., Balestrazzi, A., & Macovei, A. (2023). Noninvasive methods to detect reactive oxygen species as a proxy of seed quality. Antioxidants, 12, 626. https://doi.org/10.3390/ antiox12030626

Grimble, G. K. (1993). Essential and conditionally-essential nutrients in clinical nutrition. Nurrition Research Reviews, 6(1), 97–119. https://doi.org/10.1079/NRR19930008

Grishin, D. V., Kasap, E. Y., Izotov, A. A., & Lisitsa, A. V. (2020). Multifaceted ammonia transporters. All Life, 13(1), 486–497. https://doi.org/10.1080/26895293.2020.1812443

Gröber, U., Schmidt, J., & Kisters, K. (2015). Magnesium in prevention and therapy. Nutrients, 7(9), 8199–8226. https://doi.org/10.3390/nu7095388

Gromova, L. V., Fetissov, S. O., & Gruzdkov, A. A. (2021). Mechanisms of glucose absorption in the small intestine in health and metabolic diseases and their role in appetite regulation. Nutrients, 13, 2474. https://doi.org/10.3390/nu13072474

Grummer, R. R. (1995). Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. Journal of Animal Science, 73(9), 2820–2833. https://doi.org/10.2527/1995.7392820x

Gržinić, G., Piotrowicz-Cieślak, A., Klimkowicz-Pawlas, A., Górny, R. L., Ławniczek-Wałczyk, A., Piechowicz, L., Olkowska, E., Potrykus, M., Tankiewicz, M., Krupka, M., Siebielec, G., & Wolska, L. (2023). Intensive poultry farming: A review of the impact on the environment and human health. Science of The Total Environment, 858, 160014. https://doi.org/10.1016/j.scitotenv.2022.160014

Gu, C., Pan, H., Sun, Z., & Qin, G. (2010). Effect of soybean variety on anti-nutritional factors content, and growth performance and nutrients metabolism in rat. International Journal of Molecular Sciences, 11(3), 1048–1056. https://doi.org/10.3390/ijms11031048

Guliński, P. (2021). Ketone bodies – Causes and effects of their increased presence in cows’ body fluids: A review. Veterinary World, 14(6), 1492–1503. https://doi.org/10.14202/vetworld.2021.1492-1503

Guo, S., & Wang, Z. (2022). Glyceroglycolipids in marine algae: A review of their pharmacological activity. Frontiers in Pharmacology, 13(1008797), 1–12. https://doi.org/10.3389/fphar.2022.1008797

Guo, Y., Liu, G., Ning, Y., Li, X., Hu, S., Zhao, J., & Qu, Y. (2022). Production of cellulosic ethanol and value-added products from corn fiber. Bioresources and Bioprocessing, 9(81), 1–18. https://doi.org/10.1186/s40643-022-00573-9

György, P. (1939). the curative factor (vitamin H) for egg white injury, with particular reference to its presence in different foodstuffs and in yeast. Journal of Biological Chemistry, 131(2), 733–744. https://doi.org/10.1016/s0021-9258(18)73468-6

György, P., Rose, C. S., Eakin, R. E., Snell, E. E., & Williams, R. J. (1941). Egg-white injury as the result of nonabsorption or inactivation of biotin. Science, 93(2420), 477–478. https://doi.org/8. doi: 10.1126/science.93.2420.477

Ha, J. H., Doguer, C., Wang, X., Flores, S. R., & Collins, J. F. (2016). High-iron consumption impairs growth and causes copper-deficiency anemia in weanling Sprague-Dawley rats. PLoS ONE, 11(8), 1–19. https://doi.org/10.1371/journal.pone.0161033

Hailemariam, S., Zhao, S., He, Y., & Wang, J. (2021). Urea transport and hydrolysis in the rumen: A review. Animal Nutrition, 7(4), 989–996. https://doi.org/10.1016/j.aninu.2021.07.002

Hall, M. B., & Eastridge, M. L. (2014). Invited Review: Carbohydrate and fat: Considerations for energy and more. Professional Animal Scientist, 30(2), 140–149. https://doi.org/10.15232/S1080-7446(15)30101-7

Hall, M. B., & Mertens, D. R. (2017). A 100-Year Review: Carbohydrates—Characterization, digestion, and utilization. Journal of Dairy Science, 100(12), 10078–10093. https://doi.org/10.3168/jds.2017-13311

Hameed, O. A., Abu-Zeid, T. E. S., Mustafa, H., Taha, M. K., & Vandoni, S. (2019). iMedPub Journals Studying the Effects of Supplementing ( Reashure ) to Pregnant Sheep on Incidence of Ketosis and Health Status Pre and after Lambing Abstract Pre-lambing period results in the control group. Journal of Animal Sciences and Livestock Production, 3(2), 32–37.

Harada, N., & Inagaki, N. (2012). Role of sodium-glucose transporters in glucose uptake of the intestine and kidney. Journal of Diabetes Investigation, 3(4), 352–353. https://doi.org/10.1111/j.2040-1124.2012.00227.x

Harmeyer, J., & Martens, H. (1980). Aspects of urea metabolism in ruminants with reference to the goat. J Dairy Sci, 63, 1707–1728. https://doi.org/10.3168/jds.S0022-0302(80)83132-8

Hasan, M. S., Crenshaw, M. A., & Liao, S. F. (2020). Dietary lysine affects amino acid metabolism and growth performance, which may not involve the GH/IGF-1 axis, in young growing pigs. Journal of Animal Science, 98(1), 1–7. https://doi.org/10.1093/jas/skaa004

Haugen, B., HennessEy, J., & Wartofsky, L. (2013). Goiter. Journal of Clinical Endocrinology & Metabolism, 98(1), 27A-28A. https://doi.org/10.1210/jcem.98.1.zeg27a

Hazewinkel, H. A. W., & Tryfonidou, M. A. (2002). Vitamin D3 metabolism in dogs. Molecular and Cellular Endocrinology, 197, 23–33. https://doi.org/10.1016/S0303-7207(02)00275-7

He, B., Fan, Y., & Wang, H. (2022). Lactate uptake in the rumen and its contributions to subacute rumen acidosis of goats induced by high-grain diets. Frontiers in Veterinary Science, 9, 964027. https://doi.org/10.3389/fvets.2022.964027

He, X., Wang, Y., Zhang, Y., Wang, C., Yu, J., Ohtake, H., & Zhang, T. (2023). The potential for livestock manure valorization and phosphorus recovery by hydrothermal technology - a critical review. Materials Science for Energy Technologies, 6, 94–104. https://doi.org/10.1016/j.mset.2022.11.008

He, Z., Li, X., Yang, H., Wu, P., Wang, S., Cao, D., Guo, X., Xu, Z., Gao, J., Zhang, W., & Luo, X. (2021). Effects of oral vitamin C supplementation on liver health and associated parameters in patients with non-alcoholic fatty liver disease: A randomized clinical trial. Frontiers in Nutrition, 8(745609), 1–11. https://doi.org/10.3389/fnut.2021.745609

Hegab, Z. (2012). Role of advanced glycation end products in cardiovascular disease. World Journal of Cardiology, 4(4), 90–102. https://doi.org/10.4330/wjc.v4.i4.90

Hellmann, H., & Mooney, S. (2010). Vitamin B6: A molecule for human health? Molecules, 15(1), 442–459. https://doi.org/10.3390/molecules15010442

Helmenstine, A. M. (2019). Coffee Cup and Bomb Calorimetry. Simple Ways to Measure Heat Flow and Enthalpy Change. https://www.thoughtco.com/coffee-cup-and-bomb-calorimetry-609255

Helmich, U. (2022). Der retinal/retinol-zyklus. Abituraufgaben Ergänzt. https://www.u-helmich.de/bio/neu/2/23/4/Retinolzyklus.html

Herman, R., Kravos, N. A., Jensterle, M., Janež, A., & Dolžan, V. (2022). Metformin and Insulin Resistance: A Review of the Underlying Mechanisms behind Changes in GLUT4-Mediated Glucose Transport. International Journal of Molecular Sciences, 23, 1264. https://doi.org/10.3390/ijms23031264

Hernández, J., Benedito, J. L., Abuelo, A., & Castillo, C. (2014). Ruminal acidosis in feedlot: From aetiology to prevention. Scientific World Journal, 2014(702572), 1–9. https://doi.org/10.1155/2014/702572

Hess, M., Paul, S. S., Puniya, A. K., van der Giezen, M., Shaw, C., Edwards, J. E., & Fliegerová, K. (2020). Anaerobic Fungi: Past, Present, and Future. Frontiers in Microbiology, 11(584893), 1–18. https://doi.org/10.3389/fmicb.2020.584893

Hession, D. V., Kendall, N. R., Hanrahan, J. P., & Keady, T. W. J. (2022). The effects of oral drenching with Co or vitamin B12, drenching frequency and Co via rumen bolus on plasma vitamin B12 concentration in weaned lambs. Livestock Science, 266(105108), 1871–1413. https://doi.org/10.1016/j.livsci.2022.105108

Hewavitharana, G. G., Perera, D. N., Navaratne, S. B., & Wickramasinghe, I. (2020). Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: A review. Arabian Journal of Chemistry, 13(8), 6865–6875. https://doi.org/10.1016/j.arabjc.2020.06.039

Hidalgo, M. A., Carretta, M. D., & Burgos, R. A. (2021). Long chain fatty acids as modulators of immune cells function: Contribution of FFA1 and FFA4 receptors. Frontiers in Physiology, 12, 1–18. https://doi.org/10.3389/fphys.2021.668330

Hieshima, K., Sugiyama, S., Yoshida, A., Kurinami, N., Suzuki, T., Ijima, H., Miyamoto, F., Kajiwara, K., Jinnouchi, K., Jinnouchi, T., & Jinnouchi, H. (2020). Elevation of the renal threshold for glucose is associated with insulin resistance and higher glycated hemoglobin levels. Journal of Diabetes Investigation, 11(3), 617–625. https://doi.org/10.1111/jdi.13191

Hill, K. E., Motley, A. K., Li, X., May, J. M., & Burk, R. F. (2001). Combined selenium and vitamin E deficiency causes fatal myopathy in guinea pigs. Journal of Nutrition, 131, 1798–1802. https://doi.org/10.1093/jn/131.6.1798

Hinde, K. L., O’leary, T. J., Greeves, J. P., & Wardle, S. L. (2021). Measuring protein turnover in the field: Implications for military research. Advances in Nutrition, 12(3), 887–896. https://doi.org/10.1093/advances/nmaa123

Hintz, H. F., Schryver, H. F., & Halbert, M. (1973). A note on the comparison of digestion by new world camels, sheep and ponies. Animal Production, 16(3), 303–305. https://doi.org/10.1017/S0003356100030154

Hironaka, R., Bailey, C. B., & Kozub, G. C. (1970). Metabolic fecal nitrogen in ruminants estimated from dry mater excretion. Can. J. Anim. Sci., 50, 55–60. https://doi.org/10.4141/cjas70-007

Hishikawa, D., Hashidate, T., Shimizu, T., & Shindou, H. (2014). Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. Journal of Lipid Research, 55(5), 799–807. https://doi.org/10.1194/jlr.R046094

Hlatini, V. A., Chimonyo, M., Ncobela, C. N., & Thomas, R. S. (2021). Response to reduced dietary protein level on growth performance in growing Windsnyer pigs. Tropical Animal Health and Production, 53(136), 1–8. https://doi.org/10.1007/s11250-020-02533-x

Hoffman, J. R., & Falvo, M. J. (2004). Protein – Which is best? Journal of Sports Science and Medicine, 3(3), 118–130. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3905294/

Hong, M. H., Lee, J. H., Jung, H. S., Shin, H., & Shin, H. (2022). Biomineralization of bone tissue: calcium phosphate-based inorganics in collagen fibrillar organic matrices. Biomaterials Research, 26(42), 1–29. https://doi.org/10.1186/s40824-022-00288-0

Horscroft, J. A., Kotwica, A. O., Laner, V., West, J. A., Hennis, P. J., Levett, D. Z. H., Howard, D. J., Fernandez, B. O., Burgess, S. L., Ament, Z., Gilbert-Kawai, E. T., Vercueil, A., Landis, B. D., Mitchell, K., Mythen, M. G., Branco, C., Johnson, R. S., Feelisch, M., Montgomery, H. E., … Murray, A. J. (2017). Metabolic basis to sherpa altitude adaptation. Proceedings of the National Academy of Sciences of the United States of America, 114(24), 6382–6387. https://doi.org/10.1073/pnas.1700527114

Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Donald Malevu, T., Sochor, J., Baron, M., Melcova, M., Zidkova, J., & Kizek, R. (2017). A summary of new findings on the biological effects of selenium in selected animal species—a critical review. International Journal of Molecular Sciences, 18, 2209. https://doi.org/10.3390/ijms18102209

Hou, Y., & Wu, G. (2018). Nutritionally essential amino acids. Advances in Nutrition, 9(6), 849–851. https://doi.org/10.1093/ADVANCES/NMY054

Hou, Y., Yin, Y., & Wu, G. (2015). Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Experimental Biology and Medicine, 240(8), 997–1007. https://doi.org/10.1177/1535370215587913

Houseknecht, K. L., Baile, C. A., Matteri, R. L., & Spurlock, M. E. (1998). The biology of leptin: A review. Journal of Animal Science, 76(5), 1405–1420. https://doi.org/10.2527/1998.7651405x

How, K. L., Hazewinkel, H. A., & Mol, J. A. (1994). Dietary vitamin D dependence of cat and dog due to inadequate cutaneous synthesis of vitamin D. General and Comparative Endocrinology, 96, 12–18. https://doi.org/10.1006/gcen.1994.1154

Hristov, A. N., Bannink, A., Crompton, L. A., Huhtanen, P., Kreuzer, M., Mcgee, M., Nozière, P., Reynolds, C. K., Bayat, A. R., Dijkstra, J., Kebreab, E., Schwarm, A., Shingfield, K. J., & Yu, Z. (2019). Invited review : Nitrogen in ruminant nutrition : A review of measurement techniques. J Dairy Sci, 102, 5811–5852. https://doi.org/10.3168/jds.2018-15829

Hu, J., Ingale, S., Rathi, P., Zhang, J. Y., & Kim, I. H. (2020). Influence of exogenous acid protease in broiler chickens fed corn–soybean meal-based diets. Journal of Animal Physiology and Animal Nutrition, 104(1), 204–211. https://doi.org/10.1111/jpn.13231

Hu, Y., & Liu, B. (2022). Roles of zinc-binding domain of bacterial RNA polymerase in transcription. Trends in Biochemical Sciences, 47(8), 710–724. https://doi.org/10.1016/j.tibs.2022.03.007

Hu, Y. M., Boehm, D. M., Chung, H., Wilson, S., & Bird, A. J. (2019). Zinc-dependent activation of the Pho8 alkaline phosphatase in Schizosaccharomyces pombe. Journal of Biological Chemistry, 294(33), 12392–12404. https://doi.org/10.1074/jbc.RA119.007371

Hua, D., Hendriks, W. H., Xiong, B., & Pellikaan, W. F. (2022). Starch and cellulose degradation in the rumen and applications of metagenomics on ruminal microorganisms. Animals, 12(3020), 1–13. https://doi.org/10.3390/ani12213020

Hubner, A. M., Canisso, I. F., Coelho, W. M., Ribeiro, L., Aldridge, B. M., & Lima, F. S. (2022). A randomized controlled trial examining the effects of treatment with propylene glycol and injectable cyanocobalamin on naturally occurring disease, milk production, and reproductive outcomes of dairy cows diagnosed with concurrent hyperketonemia and hypo. Journal of Dairy Science, 105(11), 9070–9083. https://doi.org/10.3168/jds.2021-21328

Hucker, B., Wakeling, L., & Vriesekoop, F. (2014). Vitamins in brewing: The impact of wort production on the thiamine and riboflavin vitamer content of boiled sweet wort. Journal of the Institute of Brewing, 120(3), 164–173. https://doi.org/10.1002/jib.142

Hughes, E. H., & Ittner, N. R. (1942). The minimum requirement of pantothenic acid for the growing pig. J Anim Sci, 1(2), 116–119. https://doi.org/10.2527/jas1942.12116x

Huhtanen, P., & Ahvenjärvi, S. (2022). Review: Problems in determining metabolisable protein value of dairy cow diets and the impact on protein feeding. Animal, 16, 100539. https://doi.org/10.1016/j.animal.2022.100539

Hulett, N. A., Scalzo, R. L., & Reusch, J. E. B. (2022). Glucose Uptake by Skeletal Muscle within the Contexts of Type 2 Diabetes and Exercise: An Integrated Approach. Nutrients, 14(3). https://doi.org/10.3390/nu14030647

Hungate, R. E. (1943). Quantitative analyses on the cellulose fermentation by termite protozoa. Annals of the Entomological Society of America, 36(4), 730–739. https://doi.org/10.1093/aesa/36.4.730

Hungate, R. E. (1966). The rumen and its microbes (1st Editio). Elsevier. https://www.elsevier.com/books/the-rumen-and-its-microbes/hungate/978-1-4832-3308-6

Hurst, E. A., Homer, N. Z., & Mellanby, R. J. (2020). Vitamin D metabolism and profiling in veterinary species. Metabolites, 10(371), 1–44. https://doi.org/10.3390/metabo10090371

Hutchinson, J. A., Hamley, I. W., Edwards-Gayle, C. J. C., Castelletto, V., Piras, C., Cramer, R., Kowalczyk, R., Seitsonen, J., Ruokolainen, J., & Rambo, R. P. (2019). Melanin production by tyrosinase activity on a tyrosine-rich peptide fragment and pH-dependent self-assembly of its lipidated analogue. Organic and Biomolecular Chemistry, 17(18), 4543–4553. https://doi.org/10.1039/c9ob00550a

Hutchinson, J. C. D., & Morris, S. (1936). The digestibility of dietary protein in the ruminant. I. Endogenous nitrogen excretion on a low nitrogen diet in starvation. Biochemical Journal, 30, 1682–1694. https://doi.org/10.1042/bj0301682

Hynes, A. M. J., & Rouvinen-Watt, K. (2007). Monitoring blood glucose levels in female mink during the reproductive cycle: 1. Prevention of hyperglycemia during the nursing period. Canadian Journal of Veterinary Research, 71(4), 241–248. https://pubmed.ncbi.nlm.nih.gov/17955897/

Ingle, D. L., Bauman, D. E., & Garrigus, U. S. (1972). Lipogenesis in the ruminant: in vitro study of tissue sites, carbon source and reducing equivalent generation for fatty acid synthesis. The Journal of Nutrition, 102(5), 609–616. https://doi.org/10.1093/jn/102.5.609

Innes, J. K., & Calder, P. C. (2020). Marine omega-3 (n-3) fatty acids for cardiovascular health: An update for 2020. International Journal of Molecular Sciences, 21(1362), 1–21. https://doi.org/10.3390/ijms21041362

Iommelli, P., Zicarelli, F., Musco, N., Sarubbi, F., Grossi, M., Lotito, D., Lombardi, P., Infascelli, F., & Tudisco, R. (2022). Effect of cereals and legumes processing on in situ rumen protein degradability: A review. Fermentation, 8(363), 1–16. https://doi.org/10.3390/fermentation8080363

Iqbal, J., & Hussain, M. M. (2009). Intestinal lipid absorption. American Journal of Physiology - Endocrinology and Metabolism, 296(6), E1183–E1194. https://doi.org/10.1152/ajpendo.90899.2008

Jabbar, A., Tahir, M., Alhidary, I. A., Abdelrahman, M. A., Albadani, H., Khan, R. U., Selvaggi, M., Laudadio, V., &

Descargas

Publicado

March 29, 2023

Licencia

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.

Cómo citar

Nutrición animal: Texto de formación universitaria. (2023). Instituto Universitario de Innovación Ciencia y Tecnología Inudi Perú. https://doi.org/10.35622/inudi.b.090